Codimension One Minimal Projections Onto the Quadratics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Shape-preserving Projections onto N

In this paper are determined minimal shape-preserving projections onto the n-th degree algebraic polynomials.

متن کامل

The Geometry of Minimal Shape-preserving Projections onto N

We obtain minimal shape-preserving projections onto the n-th degree algebraic polynomials via a geometric approach.

متن کامل

Minimal Shape-preserving Projections Onto Πn: Generalizations and Extensions

The goal of this paper is to further the investigation begun in [6]. With the benefit of nearly ten years of work, we begin by indicating how several proofs from [6] can be substantially improved. We show that the problem of preserving k-convexity onto Πn is one part of a larger shape-preserving problem (multi-convex preservation) relative to Πn and we completely solve this expanded problem. An...

متن کامل

Uniqueness of Minimal Projections onto Two-dimensional Subspaces

In this paper we prove that the minimal projections from Lp (1 < p < ∞) onto any two-dimensional subspace is unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]) We also investigate the minimal number of norming points for such projections.

متن کامل

Exact Projections onto the Hemisphere

Recent approaches to realistic image synthesis have split the rendering process into two passes. The first pass calculates an approximate global illumination solution, the second generates an image of high quality from a given view point using the illumination solution obtained in the first pass. This paper discusses a new method for projecting polygons onto the hemisphere which is the central ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1996

ISSN: 0021-9045

DOI: 10.1006/jath.1996.0027